Public Cloud Market

The Public Cloud on Its Way into Enterprise IT

A Whitepaper by Experton Group AG
On Behalf of T-Systems
Authors: Heiko Henkes & Arnold Vogt
March 2016
This analysis has been prepared by Experton Group. The information and data contained herein were gathered conscientiously and with the utmost care. Nevertheless, we cannot guarantee their exhaustiveness and accuracy. Nobody should take action, based on this information, without expert advice and an in-depth analysis of the individual situation.

All rights to the content of this analysis are reserved by Experton Group. For privacy reasons, the data and information remain the property of Experton Group. Reproduction – even of parts thereof – may only be made with the written permission of Experton Group AG.

Copyright Experton Group AG, 2016
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Summary</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Cloud Market</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>User Perspective</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>Résumé</td>
<td>22</td>
</tr>
<tr>
<td>5</td>
<td>About Experton Group</td>
<td>2</td>
</tr>
</tbody>
</table>
Table of Figures

Figure 1: Business model & process digitalization...7
Figure 2: Cloud market Germany ..8
Figure 3: OpenStack components ...10
Figure 4: OpenStack advantages ...12
Figure 5: Degree of public cloud adoption by industry ..14
Figure 6: Cloud-based business models ...16
Figure 7: Data security vs. data privacy ..19
Digitalization is changing business models and processes. Interaction with external partners and customers is intensifying, and the public cloud provides the perfect basis for an open inter-company network.

Between 2015 and 2020, the public cloud market will experience an annual compound growth rate (CAGR) of 26 percent.

The SaaS market will continue to constitute the largest public cloud segment, currently amounting to nearly four billion Euros and growing to comprise more than nine billion Euros by 2019.

OpenStack has evolved into an industry-wide open-source initiative. More or less all important IT players provide some kind of OpenStack support. Users, too, are beginning to realize the benefits of open-source-based public cloud services.

State-of-the-art container solutions are revolutionizing the cloud market, enabling portable system landscapes for applications.

While public cloud adoption in the IT & telecommunications, transportation & logistics, chemical & pharmaceutical sectors is relatively high, other industries are still lagging behind.

Among public cloud applications, groupware solutions (such as e-mail & calendar), CRM applications and voice-over-IT applications are enjoying the highest adoption by far.

From the users’ perspective, key selection criteria for a public cloud service provider include the following:

- Data protection
- Privacy
- Transparency
- Ease of use & testing capabilities
- Breadth & innovative strength of offering
- Resources & price flexibility
- Integratability & migration
- Stability & reliability
2 Cloud Market

Status and Trends

The digital world is becoming a reality, which also changes requirements for IT infrastructures and services that form the backbone of the new digital economy. Cloud computing is evolving to become the foundation for successful business transformation. What does that mean for companies that want to use public cloud services? This chapter examines the current status of the public cloud market and key trends that have an impact on this market.

The Public Cloud as the Basis of Digitalization

Increasing digitalization of whole business processes is transforming companies on the strategic level. Pressures to continuously improve operational flexibility and efficiency are also increasing. Both developments bring about significant changes of enterprise IT environments and the whole IT industry. Without any doubt, cloud is the future of IT and also the basis of digitalization, flexibility and desirable efficiency gains. The question now is the speed of this transformation and also whether private clouds can survive within enterprise environments or whether private clouds will be better able to succeed. There are sound reasons that speak in favor of both cloud models. Experton Group does not perceive this as an either-or decision. Companies require highly standardized public clouds as well as customized private clouds. Decisions will vary between private and public clouds, and in the wake of increasing standardization, hybrid deployments will be adopted accordingly. Decisions are affected by two key factors.

The current situation (industry and economy)

The respective workload (risk assessment/ data protection)

Also, we observe a structural trend in this market. Companies’ innovative activities have an increasing focus on customer engagement. As a look at the number of new applications and services reveals, most new developments and investments target tools and services for web-based customer interaction.
In the wake of business model and process transformation towards the "digital business", initiatives such as social e-commerce, customer feedback and online marketing are becoming increasingly important. Collaboration and customer-centric touchpoints are current key drivers towards the public cloud, which has the best price/performance relationship, considering the direct cost involved, while also enjoying the highest technological maturity.
The Public Cloud Market - Facts & Figures

The increasing digitalization within all areas of consumers’ lives also has forced enterprises to gradually modify and transform their business processes. This trend is also reflected in the continued growth rates within the cloud computing market segment and especially in the public cloud services category that has experienced a growth rate of 36 percent from 2015 to 2016 and an overall growth rate of 178 percent within the last three years.

For more than eight years, Experton Group has examined and researched the market for professional cloud services and their adoption within business environments and has set up a comprehensive database with information on B2B expenditures. The overall cloud market, consisting of services such as consulting, integration and transformation services, infrastructure and middleware technologies to set up private clouds and public cloud services, comprises a share of more than ten percent of overall IT spending in Germany.

Figure 2: Cloud market in Germany

Source: Experton Group AG, 2016
B2B Market: Public Cloud Services in More Detail

Between 2015 and 2020, the public cloud market will experience a compound annual growth rate (CAGR) of 26 percent. We also expect that by 2020, about 40 percent of workloads will be provisioned out of a professional public cloud.

Software as a Service (SaaS)
The public cloud SaaS segment makes up nearly four billion Euros and will amount to more than nine billion Euros by 2019. Users’ current focus is on collaboration, communications and CRM apps, which do not only comprise ERP/POS, HR, BI and security functionality, but, increasingly, industry-specific solutions. Across this broad and in-depth scope, we can clearly observe that users’ preferences are shifting, and increasingly, vendors and providers have a solution to address respective requirements.

Platform as a Service (PaaS)
Cloud middleware and development environments are becoming increasingly important; obvious advantages and benefits include higher agility and speed, shorter release cycles to achieve a higher level functionality and innovation and the freedom of choice concerning frameworks and programming languages. Core competences include databases, web services and development environments, including analytics and monitoring tools. By 2019, the PaaS market, will increase from currently more than 300 million Euros to more than 1.5 billion Euros, which corresponds to a CAGR of 43 percent.

Infrastructure as a Service (IaaS)
IaaS as public cloud infrastructure, providing computing capacities and storage resources at the push of a button, will grow from currently 600 million Euros to nearly two billion Euros by 2019. The compound annual growth rate of public cloud IaaS is more than 30 percent. Public storage offerings in response to customer requests and independent of pure computing capacity are further driving this development. Offerings primarily consist of various compute power (CPU/h) and block and object storage resources, based on the expected load. Based on a high degree of standardization and technological maturity, a maximum of elasticity is ensured to handle peaks without any delays.

“The public cloud market is driving innovations for all digital ecosystems.”
OpenStack – An Industry-Wide Open-Source Initiative for the Public Cloud

From the beginning, the public cloud was closely connected to the open-source movement. OpenStack is one of the most successful global open-source initiatives and also enjoys one of the highest growth rates. More or less all important IT players provide some kind of support for this project. Users, too, are realizing the benefits of open-source-based IaaS public cloud services.

OpenStack has its roots in a cooperation between Rackspace, an US-based web hosting provider, and the US-American space agency, NASA, in 2009, when cloud provider Rackspace began to provision parts of their cloud infrastructure as open-source software. The company hoped to ensure the speedy and cost-efficient advancement of their own software base by setting up an open-source community. And their plan worked out; already during the first year many developers and companies showed their interest in cooperating and providing financial support for this project. As a result, the OpenStack Foundation was founded in July 2012. This non-profit organization is committed to provide a free, public-domain software for private and public clouds and to coordinate the advancement of the individual OpenStack components. Meanwhile, OpenStack has evolved into an industry-wide initiative with broad support, also by key IT players. Hundreds of IT companies, including industry giants such as HP, IBM, Intel, Cisco, EMC, Fujitsu, Dell and SAP, are actively participating in the OpenStack community.

OpenStack consists of several components, which are developed and advanced individually.

Overview of key components

Figure 3: OpenStack components
NOVA is the component that controls and manages available computing resources. It is used to create, manage and delete user instances. The component supports all common hypervisors (VMware, KVM, Hyper-V and Xen).

NEUTRON is the OpenStack network component that sets up and configures networks. It comprises software-defined networking functionality such as Open vSwitch or OpenContrail by Juniper. Neutron can be used to control practically all common switches, routers and network appliances by major vendors.

CINDER is the component for persistent storage for virtual systems. Cinder storage can be separated from the VM and be integrated with another virtual machine. Cinder provides drivers for all major storage systems by HP, IBM, EMC and Hitachi.

Swift is the object storage component for setting up redundant and scalable storage clusters in the petabyte range. Swift has been designed for long-term data storage and archiving purposes. The Swift OpenStack component has been developed by Rackspace.

GLANCE is the OpenStack component that delivers all images to be used for customers' VMs. Images need not be supplied by vendors; rather, customers can provide such images themselves.

HORIZON is the OpenStack web interface component. The easy-to-use dashboard can be used by end users to manage their own cloud. The web interface allows customers to create VMs in OpenStack fast and with a few mouse-clicks.

KEYSTONE is used for authentication purposes to allow users to log into the cloud and, for example, be able to launch and close down VMs. Based on the administrator's settings, Keystone also enforces respective policies. For instance, this component determines which user is allowed to use which services in the cloud.

CEILOMETER works in the background to keep track of who uses which services within the cloud. This service is used for billing and to normalize and transform the produced data.

HEAT is the central orchestration component within OpenStack. The module acts as superordinate unit to organize all OpenStack components.
Key OpenStack benefits for users can be summarized as follows:

- **Functional scope and broad support of multiple hardware/technology**
- **Easier, standard-based cloud management**
- **Cost savings through open-source software components**
- **Higher interoperability through open interfaces**
- **High security level through open-source code without backdoors**
- **Viability and fast innovations through strong community**

Figure 4: OpenStack advantages
Container solutions are the future

Containers allow for a portable operating environment for applications to move them easily from system A to system B. Obvious advantages of the container technology include easier migration without major adjustments of the infrastructure or middleware for source code execution. From the users’ perspective, this digital transformation not only provided greater independence when it comes to developing and enhancing the digital business process portfolio, but also reduces costs and the dreaded vendor lock-in. Containers such as Docker, currently the most popular container technology provider, improve interoperability, flexibility, modularity and, consequently, customization options while also providing a high degree of standardization.

Technologically, it is not the hardware that is abstracted, but the operating system kernel. While hypervisor-based virtualization finally provided the flexibility to run processes and applications independent of the hardware, the application and, thus, the business process, enjoys an even higher independence by making it possible to even exchange the operating system environment. Ultimately, the container configures an efficient operating environment, based on respective process requirements, to optimize resource utilization.

Users benefit from a new level of service quality and flexibility for end customers. Based on containers, the increasingly hybrid backend system is better able to compensate high loads and deliver the high modularity for micro services required for digitalization purposes.

Containers as Basis for Digital Micro Services

Containers create the perfect basis for addressing the digital micro services trend to replace isolated systems such as comprehensive and rather outdated ERP systems. Until a few years ago, software solutions had become increasingly complex to be able to address increasingly higher demands. While customized complete solutions provide a large scope of functionality, they are difficult to maintain. For end users this meant a high vendor lock-in and high maintenance and also operational costs. Migration from system A to system B or an alternative solution was hardly possible, and usability and productivity as well as connectivity with business partners and customers was limited.

This picture is changing, due to container technology that is evolving to form the basis for easy migration and digital readiness on the IT and the business level. Compared to traditional application environments based on conventional hypervisor technologies, containers are leaner and more efficient solutions.
Public Cloud Degree of Adoption and Areas of Use

As can be expected, the degree of public cloud usage differs across multiple industries. While public cloud adoption in the IT & telecommunications, transportation & logistics, chemical & pharmaceutical sectors is relatively high, other industries are still lagging behind. The retail and the automotive sectors show a moderate degree of adoption. Among banks & insurances and also machine & plant engineering companies, on the other hand, public cloud adoption is still very limited. A look at public cloud adoption growth rates reveals that the traffic & transportation sector, the chemical & pharmaceutical industry, banks & insurers and also the automotive sector are experiencing the highest growth rates at the moment.

Among public cloud applications, groupware solutions (such as e-mail & calendar), CRM applications and voice-over-IT applications are enjoying the highest adoption by far. The degree of usage of collaboration applications, security as a service and industry-specific solutions is rather moderate, and Office applications, ERP and analytics/big data solutions are lagging far behind. The highest growth rates within the public cloud can be observed for collaboration solutions, voice-over-IP or unified communications (UCC) and security-as-a-service solutions. These applications will catch up with CRM and groupware applications. Growth rates among industry-specific solutions, Office applications, ERP and big data analytics are significantly lower, since users are more dependent and in some cases also have unfounded concerns.
The strategic, integrated public cloud usage in business environments is still very moderate, mostly due to the strong reluctance of German small and midmarket businesses, since their trusted midmarket partners do not provide sufficient support to increase their awareness, initial offerings, mostly from the US, are inadequate and internal IT departments lack the required know-how. While nearly every second company works with cloud services, they mostly do not comply with respective regulations and policies and are not integrated with the existing IT landscape.

New Business Models and Services – An Industry is Undergoing Transformation

Service/hosting providers are forced to evolve into full-service providers. They must provide hosting and cloud services and provision the whole stack (from IaaS to PaaS and SaaS) in the public and private deployment mode. Based on an existing business relationship, often characterized by relying on the provider to take care of important outsourced business processes, customers rely on their business partners' data protection competence and their capabilities to maintain or create entrepreneurial freedom and flexibility to ensure up-to-date technologies and processes. IT has evolved into an acknowledged production factor.

Service providers must determine their customers’ requirements very quickly and present a solution, based on best practices, templates and cooperations. They have to perform a difficult balancing act between standardization (comparability/commodity, cost-efficiency) and managed high-value business solutions (highly customized solutions, high prices). Customers are facing a similar challenge. A higher degree of standardization may initially imply less customization and, thus, less differentiation and will always change existing habits and processes.

As a result, the group of hosting providers is increasingly challenged to provide more differentiation and specialization to be able to survive long-term, for instance, through the aggregation, integration or customization of cloud services for a specific target group or industry. Currently, most hosting providers lack the required integration and customization capabilities and do not pursue a strategic approach towards these goals.

Therefore, cloud service aggregation is among the best options for hosting providers, who are advised to engage in closer cooperation with distributors; end customers would benefit from an improved breadth and depth of their portfolios.
Vendors are increasingly challenged to set up their own public cloud services offering and to also engage in powerful alliances (e.g., VCE, Cisco Intercloud).

Another development is the trend towards business process as a service (BPaaS) in cases where the service or software is scalable and end customers can provide a certain process transparency and have the courage to embrace change. Hardware, software and, meanwhile, SaaS margins are declining, which drives the "business solution" trend with industry-specific use cases, while technology is losing its relevance. Established vendors must increase their focus on the software and service business, complemented by lucrative services such as integration, customization, transformation or business as a service.

Based on new cloud offerings, user organizations must also evaluate the cloud as foundation for new business models. When preparing a proposal or tender for future-oriented services, most companies must deal with topics such as artificial intelligence, security, mobility and usability. Such proposal should also account for the free choice of deployment options, open-source and collaboration. Funding can be achieved through a USP, the critical mass and social emphasis.

Reasons for Cloud Business Models

Why Cloud Business Models?

- Extend existing models
- Provide information on customer requirements/service channel
 - Act as player in new digital ecosystems
 - Respond to society’s real-time requirements
 - Respond to mobility requirements
- Leverage for expansion and internationalization purposes
 - Reduce capital-intensive assets/costs
 - Improve flexibility and agility/scalability
 - Secure basis of survival!

Source: Experton Group

Figure 6: Cloud-based business models
3 User Perspective

Drivers, Obstacles and Selection Criteria

This chapter summarizes the key drivers and obstacles for enterprise public cloud use cases, followed by an analysis of issues to be considered for public cloud provider selection.

Public Cloud Drivers & Obstacles

From the users’ perspective, key public cloud drivers include the following:

- **Costs**: Significantly reduce the total cost of ownership
- **Mobility**: Improve mobile and decentralized IT access
- **Flexibility**: Increase the flexibility and scalability of IT operations
- **Responsiveness**: Faster adjustment to address changing requirements through faster implementation of new applications and updates
- **Administrative efforts**: Reduce the workload of the IT department and compensate for lack of specific skills
- **Ease of use**: Reduce the complexity and simplify IT usage
- **Performance**: Increase IT availability and performance
- **“Open business”**: Strengthen collaboration with external partners and new customer-centric touchpoints

From the users’ perspective, key public cloud obstacles include the following:

- **Data protection**: Lack of trust and concerns considering data protection are the greatest obstacles.
- **Privacy**: Users are uncertain, since legal regulations on data processing in the cloud may change, as illustrated by the current Safe Harbor example.
- **Standard SLAs**: SLAs cannot be customized and agreed individually.
- **IT department**: Loss of skills and downsizing within the IT team
- **Integration efforts**: Efforts and costs related to the integration between the public cloud and in-house IT
Public Cloud Provider Selection Criteria from Users' Perspective

German users should include the following criteria and request respective evidence when selecting a public cloud provider.

Data Protection

Obviously, 100-percent security cannot be obtained or is simply not affordable, and this is not only true for public clouds. Security and data protection is not about 100-percent security, but rather the highest possible level of security. For Experton Group, security levels in the public cloud are often not a real-world problem, but is rather perceived as a problem, which is confirmed by users who are already using public cloud offerings. According to Experton Group, the actual security level of a public cloud is often higher than the security level of data centers run by midmarket businesses. However, users who are not using public cloud services yet often have another perception. In this context, it is important to note that the public cloud does not have a real security problem, but suffers from perceived security problems and a lack of trust among potential users. This crisis of confidence has a major impact on the speed of public cloud adoption in business environments. Users’ trust in a provider’s security can only be built up gradually and demonstrated accordingly through comprehensive security certifications such as ISO certifications, which provide a high security standard for cloud service providers. The ISO 27001 certification is relevant to certify the data protection of processes and workflows. It consists of more than 130 items that are subject to regular audits. Implementing an IT security management system is a key element of the ISO 27001 certification, including all processes, procedures and measures required to achieve a defined IT security level. For instance, the respective company, such as a cloud service provider, must create and implement an information security policy. Open-source architectures such as OpenStack also increase users’ trust in cloud providers. For instance, an OpenStack-based architecture model ensures that no hidden "backdoors" can be installed.

Privacy

As the invalidated Safe Harbor agreement with the US has demonstrated, legal regulations may change anytime, even more so when it concerns international agreements where great differences of opinions exist between nations, as is the case when it comes to privacy protection. Experton Group advises that user organizations avoid related risks to be on the safe side, not only with current legislation, but also for any potential tightening of the legal situation. To account for such risks, the public cloud service should be operated from within a local data center and the respective provider should have registered offices in Germany or make sure that the data center is operated by a German partner. Within the context of the current political situation, data can also be stored in another member state of the European Union in compliance with respective regulations.
However, the current legal situation may change, as Safe Harbor has demonstrated only recently. As for data protection and security (see above), data privacy should also be ensured through respective certifications. The ISO 27018 certification (on privacy) builds on the ISO 27001 (on data protection). ISO 27018 establishes regulations on the processing of personal data in the cloud by formulating privacy requirements for cloud services. For instance, cloud providers must agree to process personal data only in compliance with their customers' specifications. Also, cloud providers must document any kind of security breach and notify the customer respectively and must implement binding rules for the transfer, return and usage of personal data.

Data Security vs. Data Privacy

Data Security
- Password Protection
- Authorization System
- Encryption
- Logging
- Backup and Archiving

Data Privacy
- Multi-Tenancy
- Opt-In Solution
- Opt-Out Solution
- Privacy Statement
- Anonymization
- Pseudonymization
- Data Minimization
- Delete Functionality
- SaaS / On-Premise
- German/European Location

Figure 7: Data security vs. data privacy
Public Cloud Market

The Public Cloud on its Way into Enterprise IT

Transparency

Public cloud offerings often lack transparency when it comes to prices, performance, SLAs and contract design. Users are looking for easy-to-understand, clear and comparable information on prices, performance, SLAs and contractual aspects. For providers, it is rather difficult to meet this requirement, for their strategy is often based on making it more difficult for users to compare prices and performance, rather than making it easier to make such comparison. According to Experton Group, providers who ensure a high degree of transparency will be successful long-term. Customers appreciated openness and transparency, and public cloud service can only survive long-term if they are able to earn users' trust on a daily basis.

Ease of use & testing

Users want speed and ease of use of self-service-based public cloud services. This requires an intuitive user interface and a high degree of automation for cloud services provisioning. Trial access also provide fast, easy-to-use and non-committal testing possibilities for users to reduce any fears of contact and many providers have already such options available.

Breadth of offering & innovation

Users consider the public cloud not only to get supplied a broad portfolio of infrastructure services (from compute power to storage for file services to network and backup options), but also to benefit from fast innovations when implementing new cloud services. Cooperation based on common standards ensures a high speed of innovation. Today, one single provider can hardly provide the required resources to drive innovations in multiple areas. Providers need a network to cooperate and distribute various tasks to achieve innovations faster. For instance, OpenStack provides such large, open and strong community that drives all kinds of solutions in multiple areas.

Resources & price flexibility

High scalability through an extremely elastic data center infrastructure is a basic public cloud requirement. Flexibility is not only important for data center resources, but also for the pricing model. Currently, the public cloud without a pay-per-use model is not an option for users at all. However, there might be other pricing models available in the future. For instance, a provider who is the first one to offer a flat-rate model might create quite some disturbance and disruption in the public cloud market. After all the telephone market has already demonstrated such evolution from a pay-per-use to flat-rate models.
Integratability & migration

Besides the service life of public cloud services users must also consider implementation costs during the start-up phase and migration options when the public cloud services reach their end of life. Users must have a clear notion of real efforts and costs required to integrate public cloud services with internal IT resources within a hybrid model and must also know about data migration options at the end of life. An OpenStack-based architecture model would, for instance, be an excellent solution to ensure easy migration to other OpenStack-based public cloud providers and eliminate vendor lock-in.

Stability & reliability

Basic values such as the provider’s financial stability and trustworthiness should not be ignored either. The public cloud provider must have the status of a “highly trusted partner”, the more so in cases where sensitive data shall be processed in the cloud. Users have much more confidence in companies that have been present in the German market for many year and have “earned” this trust and reputation accordingly. Users’ trust is increased even further if the respective provider has a certain size and demonstrates a strong local commitment.
4 Résumé

The public cloud has found its way into enterprise IT environments

The benefits of the public cloud are obvious. The public cloud is the epitome of unlimited scalability and elasticity at attractive prices. External resources are provisioned easily "on demand" at the push of a button and, optimally, based on a per-second, pay-per-use model. But despite such economic benefits, users should be careful when selecting a public cloud service provider, since a closer look behind the curtain reveals significant differences.

Today's public cloud offerings must ensure scalability and provide per-per-use billing options, while also providing openness and security

State-of-the-art public cloud offerings combine the public cloud philosophy with the required openness and security, and such offerings are still the exception. Currently, the OpenStack open-source cloud platform is establishing itself as the smallest common denominator on a global level. Customers can rely on continued development efforts by the foundation, ensuring these platforms' viability and long-term success. Also, more and more public clouds are operated in local data centers and, optimally, by providers that are based in Europe and provide respective support. From the German users' perspective, such public cloud offering complies with all privacy regulations and can be used for critical and sensitive services or data.

The public cloud's future relevance is increasing, however, within the context of hybrid cloud models

Will everything be moved into the public cloud? Certainly not! Real-world implementations will always combine multiple types of system landscapes, currently a hybrid cloud with an increasing share of public cloud components. Many of the early public cloud providers have to deal with one major challenge: In the wake of increasingly complex system landscapes, users need a helping and experienced hand to provide not only cloud provisioning and maintenance, but also specialists to support them with competent consulting and support services.
5 About Experton Group

Experton Group is the leading fully integrated research, advisory and consulting company. Experton Group supports large enterprises as well as midmarket businesses with their IT strategic planning and implementation through innovative, neutral and independent consulting and advisory services to help them maximize the business value of their ICT investments.

Experton Group has more than 80 employed and free-lance advisors. They provide market research, advisory services, assessments, benchmarks, conferences, seminars and publications on information and communications technology topics. The scope of services includes technology, business processes, management and M&A.

For more information on Experton Group, please visit: www.experton-group.com