Low latency, high connectivity, and efficient bandwidth utilization: Edge computing is ideally suited for IoT applications that require real-time data to be processed as quickly as possible. It offers the best basis for relieving central IT infrastructures of the rapidly increasing volume of data in the future.
Global data traffic is exploding. As the world becomes smarter and more connected, experts expect exponential growth in global data volumes in the coming years. An estimate by the market research company IDC suggests that the amount of data generated could rise to 175 zettabytes by 2025. The Internet of Things (IoT) is becoming a driving factor behind this development: The boom in smart homes, connected production and logistics processes, and IoT projects in public spaces will generate more and more data in the future. More data also means more emissions. But edge computing makes for more economical and efficient data traffic. The data no longer has to be sent over the network to the central (and much more energy-intensive) cloud data centers and is instead processed directly at the point of origin. Being on the “edge”, therefore, has a positive impact on the carbon footprint of IT infrastructures.
If central cloud infrastructures are left to process the real-time data that will be generated in the future on their own, they will reach their limits sooner or later—the growth involved is simply too rapid for them to keep up. Much of this data, however, would not actually need to be stored in the large data centers, but would be much better off at its actual place of origin—the edge.
Decentralized edge computing infrastructures at these locations could analyze and store the data in real time, bypassing any physical detours. After all, the cloud often only needs a fraction of the information collected, especially when it comes to IoT. Consider the example of smart camera systems for traffic analysis: although the livestream of an intersection generates large amounts of real-time data within a very short time, only specific events are actually of interest to the machine learning algorithm in the cloud. But if the camera system and the cloud then nevertheless exchange countless hours of video material in which no cars even pass the intersection, this places an unnecessary burden on the company's IT resources.
To efficiently manage even complex edge computing infrastructures, companies rely on a central platform for controlling all systems. This is why we installed our EdgAir solution at the Center Connected Industries (CCI) at RWTH Aachen University. The platform enables employees to centrally access services such as machine management or status monitoring. Because this solution administers the entire edge ecosystem from the cloud, employees have the ability to continually add new services or functions and, if necessary, transfer them to the edge infrastructure via the network. As a result, companies are able to interlink and optimize their processes in an uncomplicated way. The result: production, communication and IT are growing together. Not only does this give companies a handle on growing data volumes, it also successively optimizes their production and logistics processes.
Digital transformation and our ecology are closely connected, and tomorrow’s climate targets cannot be met with yesterday’s technologies. Edge computing has a positive impact on the carbon footprint of IT infrastructures because it makes more efficient and economical data traffic possible. In many cases, the data can be processed directly at the point of origin. As a result of their demanding application settings, edge servers are generally highly optimized for resource efficiency, require less energy, and therefore have a significantly lower carbon footprint than the technology in data centers. The increasing prevalence of edge computing will significantly reduce the load on networks and data centers in the future—resulting in lower power consumption and more sustainable IT infrastructures.
At T-Systems, we support companies in striking the right balance between digital growth and sustainability measures.